If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-5=0
a = 2; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·2·(-5)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*2}=\frac{0-2\sqrt{10}}{4} =-\frac{2\sqrt{10}}{4} =-\frac{\sqrt{10}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*2}=\frac{0+2\sqrt{10}}{4} =\frac{2\sqrt{10}}{4} =\frac{\sqrt{10}}{2} $
| 7c=4(2c+15) | | 6x+1=12x–5=32. | | (8x2)+(4x2)=+8 | | 2x+15-2(x+5)=3x-2 | | 22+6n=4-6(-5n+5) | | 2*y^2-5*y=0 | | 1+1+2+p=3 | | x+3x=84000 | | 8=3nn=6 | | x-1/3=2x-5 | | t/3+7=23 | | 3+p+2=4 | | x+3x=84,000 | | y=475(.5)^3 | | 3x-9/5=15 | | 8y+14y–17y=-20 | | t/3+7=22 | | 7+9(n+1)=9n | | 4(x+1)+3=11 | | x-9=x-47 | | −10p+9p=12 | | 12n+6=2(5+6n)-4 | | x^2-5x+6/x=0 | | 4(x-3)=5x+2= | | 7k+12=5k+6 | | 12x+15=12x–10 | | 8=4k | | 5aa=20 | | x2+8x+97=0 | | 3(2a-4)=6(a-2) | | 2x/5-1=4 | | 8-z=4+6z |